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Abstract

The Hindley-Milner algorithm is described and an implementation in Stan-
dard ML is presented.

1 Introduction

The idea of logical types was introduced by Russell and used in Principia Mathematica
to avoid the kinds of paradox in set-theoretic reasoning which were seen to arise as a
consequence of applying concepts such as set-membership inappropriately. Russell’s
paradox is the paradox that was evident in Frege’s Begriffschrift which was intended as
the basis for a logical foundation for mathematics. The paradox comes about because
of the definition of a set as the collection of objects that satisfy a certain predicate P,
say. Now sets can contain other sets, and if we identify the set by just the predicate
P then we can form a new predicate R, say, which defines the set of all sets that do
not contain themselves. Thus R is the predicate R(P) which is true if the predicate
P identifies a set which does not contain itself. That is, R(P) if, and only if P(P) is
false, which we can write as R(P) = =P (P). Now we can consider the set R and ask if
R contains itself. That is, we wish to decide the truth of the predicate R(R) = —R(R)
and so we have the paradox that R(R) is true if and only if R(R) is false.

Russell introduced logical types because he hoped that by restricting the types of
object to which predicates can be considered to apply he would be able to avoid all
kinds of inconsistency including this one. Unfortunately this made his logic consid-
erably more complex because the way Russell defined the natural numbers, adding
one to any number produced an object of a different logical type. All the predeces-
sors of that number could also be defined at the new type, but it meant that one
couldn’t easily define what an arithmetic expression like y = x — 1 means because y
has a different logical type to that of x. This complexity could be obviated somewhat
by adopting a principle that one could always treat the numbers as appearing at the
same type. This was called the ramified theory of types. The notion of logical types
was used again some decades later by Church in the typed lambda calculus, which
is the basis for the modern incarnations of Higher Order Logic such as HOL4 and
Isabelle/HOL.
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2 The lambda calculus

The A-calculus is the language of expressions e € Exp in variables x € Var given by
the grammar
ex=x]|ee | Ax.e

The variables are the set Var = {a, b,c,...,x,y,2z,x",y', 2, x",y",...}.
The syntactic construct Ax.e binds the variable x in the expression e. Variables in

lambda expressions occur either free or bound. A variable is bound if it is not free,
and a variable is free if it is in the set FV(e) defined recursively as

FV(e,)UFV(e,) ife=e,e,
FV(e)=< FV(e)\{x} if e = Ax.e,
{x} ife=x.

The beta reduction relation — is defined as the least congruence relation on expres-
sions e such that

(Ax.e)e; = [ey/x] e
where [t/x]e means substituting the term t for each free occurrence of x in e. If
there are free variables in e, then bound variables in e; must be renamed so that

substitution does not result in the free variables in e, becoming bound. This process
of renaming bound variables is called alpha conversion.

A lambda expression is in normal form when there are no reductions that can be
applied. Normal order reduction reduces the left-most, outer-most application of an
abstraction. The weak normalisation theorem says that repeated normal order reduc-
tion always reaches a normal form, if there is one. Here are some examples of normal
order beta reduction with alpha conversion.

(Afhx f(F )M A f(f )] = A (Afhe f (F )OS A f (f x)) ]
o X o Ao f (F LT (O e f () )
— A Ax" O x (e XN Ax.f (f x)) x ']

— A Ax’x (e (M e f (F )] 7))
— hxAx’x (e (O x (e XN [']))

— e x’x (x (x (x x)))
Some lambda expressions do not have a normal form:

(Ax.x x)[Ax.x x] — (Ax.x x)[Ax.x x]
— (Ax.x x)[Ax.x x]

Church introduced types to the lambda calculus to prevent the inconsistencies that
result from Russell’s paradox being expressible in the ordinary untyped lambda cal-
culus. In fact the existence of these so-called paradoxical combinators is what makes
the untyped lambda-calculus a fully-functional language for representing all possi-
ble computations, including those of the partial functions which are functions f(x)



which are not defined for some values of x. In computational terms, not defined
means that the computation loops indefinitely without returning a result.

It was Church’s student Haskell B. Curry who discovered that Russell’s paradox
could be expressed almost immediately as R = Ax.—(x x) which gives RR = =(RR).

The combinator
Y=MA.Ox.f(xx))Ax.f (xx)

generalises this for any function f. Curry’s Y combinator has the property that for
every function F, the lambda term Y F satisfies the equation YF = F (Y F). Thus
the combinator Y finds a fixed-point Y F for any function F. Using such fixed-point
combinators one may define any partial or total recursive function. Y has no normal
form: it repeatedly applies f:

MO f (ex))[hx./ (xx)] = M f (e f (e ) [hx./ (x x)]
ML F U f (Do) ()] -

3 Interpreting lambda calculus

The abstract terms of the lambda calculus can be used to represent numbers and any
other mathematical objects. The terms

0=AfAx.x and  S=inAfix.anf(fx)

represent the ordinal 0 and the successor function S which produces the next ordinal.
Thus the term SO which we saw earlier is the number 1 = Af.Ax.f x. In general the
Church numerals are the lambda terms

n= A Ax.[f"]x
where [f”] x represents f (f ---(f x)--) i.e. the n-fold application of f to x. The

Church numerals thus each ‘contain’ some finite amount of recursion and this is
sufficient to define the usual arithmetic operations. Addition is defined as

ADD = im.An f  x.m f(nfx)

This is a function with one argument m which evaluates to a function of one argu-
ment 7 which evaluates to number. This way of defining 7-argument functions as
n-fold compositions of abstractions is called currying and the resulting functions are
called curried functions, after Curry.

A curried function can be partially applied to give another combinator. For example
ADDSIX =ADD 6 — An.Af.Ax.6 f (n f x))
is a combinator which adds six to its argument. If we apply this to 3 we get

ADDSIX 3 — A f.hx.6 f (3 f x))

and we see that the result will be the six-fold application of f to the result of the
three-fold application of f to x, and this is just the nine-fold application of f to x
which is the Church numeral 9.



Multiplication and exponentiation are similar

MUL = Am.in.Af Ax.m(n f)x
EXP=Am.An\f Ax.nm fx

Subtraction is less obvious. Another student of Church’s, Steven C. Kleene discov-
ered how to express it. Since writing down a Church numeral n sets up an n-fold
application of a function, subtraction could be done if one could define a predecessor
function PRED which was the inverse of the successor function S. To do this, Kleene
first found a way to represent pairs of numbers using the constructor

PAIR = Ax.Ay.Af.fxy
The operations FST and SND are the corresponding deconstructors
FST=Ap.pAx.Ay.x  and  SND=Xp.pix.ry.y.

Then the predecessor combinator can be defined by first defining a function g which,
given a pair (x,-), produces the pair (f(x),x) so that g”(x,y) = (f"(x), f*~'(x)).
Thus

G = \f.)p.PAIR (f(FST p))(FST p)

then the predecessor combinator is
PRED = An.SND (7 (GS)(PAIR00))

Thus PREDn reduces in one step to SND (n(GS)(PAIR00)) and this is the sec-
ond element of a pair (§”0,5”~!0), which in turn is the 7-fold application of GS to
the pair (0,0). It is not very efficient, taking seventeen reductions to compute the
predecessor of 1. See Appendix B for the details.

Subtraction may then be defined as

SUB = Am.An.n PRED m.

4 Types

The aim of a type discipline is to constrain the statements of a formal language to
just those that are well-defined according to some semantics. In the case of Russell’s
logical types the aim was to disallow impredicative definitions: those where a pred-
icate refers to itself in its own definition. This is what happens when we define the
Russell predicate which represents the set of all sets that do not contain themselves.
It implicitly includes a reference to itself under the universally quantified ‘sets that do
not contain themselves’ because it is a predicate which is itself defining a set.

The way the type discipline achieves this is by stratifying the expressions so that each
expression may only include references to objects which are constructed at lower
‘levels’ of the hierarchy. In the system of Principia Mathematica, the levels are called
orders and the order of an expression is one more than the highest order of any of the
expressions it contains. In this way all the universally quantified statements like ‘all
sets that ...~ are ‘universally quantified’ only over orders strictly lower than those at
which they appear.



Russell was attempting to define mathematics from an exact and precise foundation
of logic. He therefore started with the most exact language and was obliged to re-
main within it for the entire project. This is extremely difficult and arduous and he
was not particularly successful. Church’s type system [1] was very similar, but he
was working two decades after Russell. Consequently he was able to use Tarski’s
notion of semantic definitions in a meta-language. This allows one to define a more
precise language in terms a less precise one. This is much more efficacious. Whereas
Principia Mathematica was published! as three large volumes and took decades to pro-
duce, Church’s system was equally powerful and was described in one 14 page paper,
produced in a matter of months.

In Church’s formulation of higher-order logic, many of the axioms and theorems are
infinite schemas indexed by meta-language type variables. This is similar to the notion
of typical ambiguity employed in Principia Mathematica, but it is strictly speaking
not ambiguity in the types at all. Rather, the ambiguity—if it is such—is contained
entirely in the meta-language where the type variables can range over all types. This
was carried through to the proofs of the theorems which were considered to be meta-
mathematical in that they were schemas of proofs such that any one of the infinite set
of theorems represented by the schema would be provable at the given type.

Church’s types were syntactically bound to the lambda terms. Every term had to be
typed and the types were attached to the symbols as subscripts. What I show here is
a scheme due to Curry where the types are defined as a predicate which is separate
from the syntax.

Given a set ¢ of types of individuals, we can define simple types T using the grammar
Ti=i|ToT

We then specify a type predicate based on a set qf assumptions I' = {x, : T1sXp i Tyses J
where each x; : 7; gives the type 7; of the variable x;. The type predicate I' Fe: 7
is to be read ‘The expression e has type 7 under assumptions I and it is true if and
only if it has a derivation using the rules

TAUT: ——— (x:7€l’

I'kx:t (rezel)
I'kte:t/ > I'ke':7 I U{x:t'}ke:r

COMB: ABS:
I'k(ee):r I'k(Ax.e):v' >t

where I, is I" without any assumptions about the variable x.

For example here is a derivation of the type of the term A f.Ax.x

AZ::UT: firxit’ bFx:t
B S fitEQOxx) it =1 o
CFOfxx) it o1

'In the first instance at the authors’ personal expense!



Thus for any types 7 and 7’ the expression Af . hx.x is well-typed. Here 7 and 7’ are
not themselves types, they are meta-language variables which are placeholders for ac-
tual types like ¢ — ¢ or (¢ — ¢) — ¢. Similarly ¢ is a placeholder for a type constant like
boolean or integer in some actual language: the language of simple types is an abstract
language. Appendix C gives the derivation for the type (An.Af Ax.n f (f x)) A f . Ax.x.

As one would hope, restricting the lambda calculus to the expressions that can be
simply-typed, the fixed-point combinators are no longer available. For example, if
we attempt to type the Y combinator

firooFQOx.f(xx): 7" - " firovFQOx.f(xx)): 7"
o=t FOx.f(xx)Ax.f(xx):t”
Of.Ox.f(xx)hx.f(xx):(t = 7)) > "

"

COMB:

ABS:
|_

"

we find we need " = v — " = (7" — ") - " = ... which cannot be satisfied

by any simple type.

It is not just the fixed-point combinator Y which is un-typable. If a term ¢ is strongly
normalisable then this means that there are no infinite reduction sequences beginning
with ¢. The strong normalisation theorem proves that every term in the simply-typed
lambda calculus is strongly normalisable. Thus all terms are defined and so all func-
tions represented in the simply-typed lambda calculus are total functions.

This discipline carries a penalty however, because whenever one applies a Church
numeral to a function, as happens in the definitions of addition ADD and the pre-
decessor function PRED, one obtains a result which is at a higher type than the
operand. If we use Church’s very efficient device of using @’ to denote the type
(¢ > a) > a = a and a” the type (¢/ — @’) > o’ — o’ etc. then the type of the
predecessor function PRED is «” — @’. In other words, the result is at a type one
level lower than that of the operand.?

This complicates the proof schemas considerably and Church repeatedly needs to use
devious inductive applications of a type-raising operator T : @ — @’ to prove theorems
like his denounement, the theorem schema 43%:

N a'(no/) = Pa/a’(sa’a/(na’)) =ny.

0

which says® ‘at type &, if 7 is a number then the predecessor of the successor of 7 is
n’

The difficulties arise because there is no typical ambiguity in the object language.
Every instance of a meta-language proof schema indexed by a meta-language type
variable « is at some definite type.

5 The ML type discipline

Every ML term has a type. The basic types are boot, int, string etc. Other types like
lists: & list and pairs a * 3 are built using type constructors which are functions acting

2In Church’s system it was two levels lower because his pairing operator had the type o’ — o’ — a”.
3The subscripts are the types, where the type Ba is the type of functions from a to 8 and the type o is
the type of propositions, i.e. truth values.



on types instead of values. Here o and (3 are type variables which can be instantiated
to any type. This parameterisation means that ML types are not simple types, they
are polymorpbhic.

In ML the function space type constructor which takes the role of A is written n
so the lambda expression Ax.x is coded in ML as fn x => x. Thus we may code the
Church numeral 2 as

val two = fn f => fn x => f (f x)

then ML gives it the type 0, = Va.(a = @) — o — a which means that the function
two can be applied to any function of type @ — a whatever the actual type a, to yield
a function of type @ — a. This is the most general type for that expression in a sense
that will be made precise later on, however note for now that the Church numeral 1
when coded in ML as

val one = fn f => fn x => f x

is given the type o, = Ya 8.(a = 8) = a — B which is more general than o, in that
if we choose B = @ in o, then we have ¢,. One says that o, is a generic instance of 0.
The type assigned to 2 is the most general, given that the types of the domain and the
codomain must be the same, because in the expression f (f x) the function is applied
to the values it produces. This is not the case for 1 and so there /" may produce values
of a different type to those in its domain.

Yet more general still is the type of the Church numeral 0

val zero = fn f => fn x => x

which is 0y =Va .0 — 8 — (. This is because f is not applied so the type assigned
to f need not be restricted to function types, it could be any individual type too.

The notation 0, < 0, < 0, is used to indicate that o, is a generic instance of o, which
is itself a generic instance of o,. Here the letters o, refer to type-schemes rather than
mere types, and they are metalanguage variables like 7;, but the variables , 8,y are
type variables in the object language. The distinction is a subtle but important one.

The effect of having type variables is to allow genuine typical ambiguity in the object
language itself, not just in the meta-language. In Milner’s type system the infinite
tower of types of the Church numerals collapses to just the generic instances of the
type-scheme 0, = Va8.a — 3 — [3. For example the following ML declarations
directly code the function PRED and apply it to the Church numeral 6:

fun num 0 = ( f => X => X)
| num n = ( f = x = f (num (n-1) f x))
val zero = f = X => X
val succ = n => f = x = nf (f x)
val pair = X => y => f=fxy
val fst = p=>p ( X => y => X)
val snd = p=>p ( X => y =>vy)
val g = f = p => (pair (f (fst p)) (fst p))
val pred = n => (snd (n (g succ) (pair zero zero)))

val pred6 = (pred (num 6))



ML deduces the type-scheme* o, for the predecessor of 6. This is the same type-
scheme as 6 itself. Thus the technical difficulties which Church had to deal with—
those of numbers appearing at different types—disappear completely and the proof
of Church’s 43% can now be carried out quite straightforwardly.>

ML will not type the Y combinator, nor any other lambda expressions that do not
have a normal form. Nevertheless ML is a Turing complete language because it allows
recursive function definitions which it treats as if there were a fixed-point combinator
fix which may be written in ML as

fun fix f = f (fn x => fix f x)

and to which ML assigns a type Va B.((a = ) = (¢ = B)) = a — .

Although there are some 400 lines of standard ML in this document there is not one
single explicit type annotation. Yet every statement is type-checked before being run.
All ML compilers and many other languages use the Hindley-Milner algorithm [3, 5]
to infer the most general types of expressions. This allows programs to be written
with very few explicit type annotations, but still to benefit from type checking.

6 Unification

The type inference algorithm uses Robinson’s unification algorithm [7] which was
intended as a scheme for choosing instantiations of universally quantified variables in
theorem proving with resolution which is the basis for logic programming languages
like PROLOG. Unification is easier to understand in terms of functions with argu-
ments than in terms of binary infix operators like the function type constructor —
so we will interpret the latter as functions of two arguments. Type constants like ¢
can be considered as constant functions (i.e. ones that take no arguments and return
a value). We will also be able easily to extend the language to include other type con-
structors such as one for polymorphic lists by introducing a unary type constructor
function with an associated type-scheme.

Hence we will describe unification as working with functions like f(x,y) and con-
stants like 2 and & which represent type constructors like @ — 3 and ¢ respectively.
In the following we will also assume that italic Roman letters x, y and z are variables.

Unification is a recursive algorithm for determining a substitution of terms for vari-
ables (i.e. a variable assignment) that makes two terms equal. For example we can
unify f(a,y) with f(x, f(b,x)) with the substitution [a/x, f(b,4)/y] which should
be read ‘substitute « for x and then substitute f(5,4) for y°. The substitution § is
the composition S = [f(b,x)/y] o [a/x] of the two separate substitutions [4/x] and
[f(b,x)/y]. Note that composition of substitutions is right to left so that we per-
form the rightmost first, and we apply the rightmost to the leftmost in the process
of composing. The order matters. It is easy to see that the substitution S applied to

f(a,y) gives f(a,f(b,a)) and when applied to f(x, f (b, x)) yields the same. Thus we
say S is a unifier of f(a,y)and f(x, f(b,x)).

*Provided value polymorphism is not in effect. If it is, as in Moscow ML by default, then the type
variable in the resulting type will not be quantified.
5Tt is still a meta-mathematical proof schema because it requires induction, but it is much simpler.




The unification algorithm finds the most general unifier of two terms, which is a uni-
fier U with the property that if there is any other unifier §’ of those two terms then
there is some substitution 7 such that 7 o U yields the unifier §’. In other words
every other unifier §’ can be seen as a particular case of the most general unifier U.

Unification is not always possible. For example one cannot unify two different func-
tions like f(a,b) and g(x,y) because we treat functions and constants as different
from variables and we only assign to variables. For the same reason one cannot unify
two constants like 2 and 5. Functions must also occur with the same arizy, for ex-
ample one cannot unify f(a,) and f(x). Lastly, one cannot unify a variable like x
and a function like f(x,...) which is applied to x because any substitution would not
yield the same term when applied to both x and f(x,...). It is this fact that means
that lambda expressions with no normal forms cannot be typed in ML when written
as functions. Recall the type 7" = "/ — 7" which we needed to type the Y combi-
nator; putting f(x,y) for the type constructor x — y we find we need x and y such
that x = f(x,y). In order to unify x and f(x,...) one would need some notion of
a fixed-point operator acting on g which we could consider the solution in x to the
equation x = f(x,...). In the absence of this we therefore need:

Algorithm (Occurs check)

A variable x occurs in a term ¢ if and only if £ = f(s,5,,...,s,) for n > 0 and either
sl-:xorxoccursinsl- forsome i =1,2,...,n. O

The unification algorithm is described recursively on the structure of terms.
Algorithm (Unification)
To find the most general unifier U = MGU(¢,t’) of terms ¢ and ¢’

(i) If t =x and ¢’ =y then U = [x/y].
(ila) If t =x and t' = f(s;,5,,...,5,) and x does not occur in ¢’ then U = [¢'/x].
(iib) If £ = f(s;,5,,---,5,) and £’ = x and x does not occur in ¢ then U = [t /x].
(i) f t =a and t' =a then U =].
(v) If £ = f(5;,85-.-,5,) and t' = f(s;,55,...,s,) then
U=MGU(f(Us,, U153""’5n)’f(UIS;’ U15;a~--’5n>>° U
where U = MGU(s/, /).

In any other circumstances the algorithm fails. 0O

The code in figure 1 implements unification on a datatype of terms. It consists of
the datatype definition and then definitions of the operations of substitution (subs)
and composition of lists of substitutions (compose), followed by the unification algo-
rithm itself. Appendix E contains code for printing terms (ppterm) and substitutions
(ppsubs).

We make meta-language copies of the variables and use ML expressions to construct
terms. Here is an example of unifying j(x,y,z) with j(f(y,y), f(z,2), f (a,4)). The
MGU of which is

[f(f(f(asa), f(a,)), f ([ (a,a), f (@,a)))/x, f (f(a:a), [ (a:a)) ]y, [ (a;a)] 2].



datatype term = Tyvar of string
| Tyapp of string * (term list)

fun subs [] term = term
subs ((tl,vl)::ss) (term as Tyvar name) =

if name=vl then tl else subs ss term
subs _ (term as Tyapp(name,[])) = term
subs 1 (Tyapp(name,args)) =

let fun arglist r [] = rev r

| arglist r (h::t) =
arglist ((subs 1 h)::r) t

in
Tyapp(name, arglist [] args)
end

fun compose [] sl = sl
compose (s::ss) sl =
let fun iter r s [l =rev r
| iter r s ((tl,vl)::ss) =
iter (((subs [s] tl),vl)::r) s ss

in
compose ss (s::(iter [] s sl))
end

exception Unify of string

fun unify tl1 t2 =
let fun iter r tl t2 =
let fun occurs v (Tyapp(name,[])) = false
| occurs v (Tyapp(name, ((Tyvar vn)::t))) =
if vn=v then true else occurs v (Tyapp(name,t))
| occurs v (Tyapp(name,(s::t))) =
occurs v s orelse occurs v (Tyapp(name,t))
| occurs v (Tyvar vn) = vn=v
fun unify args r [] [] rev r
| unify args r [] _ = raise Unify "Arity"
| unify args r [l = raise Unify "Arity"
| unify args r (tl::tls) (t2::t2s) =
unify args (compose (iter [] (subs r tl1)
(subs r t2)) r) tls t2s

in
case (tl1,t2) of
(Tyvar v1,Tyvar v2) => if (vl = v2) then [] else ((tl, v2)::r)
(Tyvar v,Tyapp(_,[])) => ((t2, v)::r)
(Tyapp(_,[]),Tyvar v) => ((t1, v)::r)
| (Tyvar v,Tyapp ) =>
if occurs v t2 then raise Unify "Occurs" else ((t2, v)::r)
| (Tyapp _,Tyvar v) =>
if occurs v tl then raise Unify "Occurs" else ((tl, v)::r)
| (Tyapp(namel,argsl),Tyapp(name2,args2)) =>
if (namel=name2)
then unify args r argsl args2
else raise Unify "Const"

end
in

iter [] t1 t2
end

Figure 1: Unification
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val x = Tyvar "x"
val y = Tyvar "y"
val z = Tyvar "z"

fun apply s 1 = Tyapp(s,1)

val a = apply "a"
fun j(x, y, z) =apply "j" [x, y, 2z
fun f(x, y) = apply "f" [x, y

val tl
val t2

j(x,y,2)
j(fly,y), f(z,z), f(a,a));

val U = unify t1 t2;
ppsubs U;

7 Hindley-Milner Type Inference

The algorithm is defined for a simple language of expressions e over variables x de-
fined by the grammar

ex=x|ee’ | \x.e|letx =eine’

and another of types © and type-schemes o, over a set of type variables o and a set of
primitive types ¢.

Ti=allTt—oT
ocu=1|Vao

The variables bound under universal quantifiers are called generic type variables and
others are free variables.

Type derivations are with respect to the rules:

S I'ke:o "
TAUT: ———— (x:0 € INST: ————— (0 >0’
I'kx:o I'ke:o’

I'ke:o rot : I'ke:tv'>1 I'ke,:t
GEN: ————  (anot free in T’ COMB:

I'ke:Vao I'kF(ee):t

I U{x:t'}ke:r I'ke:o I Uf{x:o}lFe:t
ABS: LET:

I'kF(x.e):v' > 7 I'k(letx =e¢ ine)):7

Note that apart from the types ¢ of individuals, the only other types the algorithm
deals with are those constructed by the function-space type constructor —. As men-
tioned in the previous section on unification, other compound types can be introduced
by defining type constructors which are merely special functions which have as the
codomain the new type. For example a type of pairs « X 3 can be defined by assum-
ing the existence of a constructor PAIR:Va3.a — 8 — a x 8 and deconstructors
FST:VafB.a x B — a and SND:Vaf.a x 8 — 3. The type system is therefore
independent of the semantics of the language of expresswns and this is how ML can
accommodate higher-order functions and fixed-point operators which are completely
outside the scope of the simply-typed lambda calculus.
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On this view, the types ¢ of individuals can similarly be construed as applications of
nullary type constructors like TRUE:bool and FALSE :bool.

The type inference algorithm is called W, for some reason. There are four cases, one
for each of the productions in the grammar of expressions e. The four cases each
correspond to one of the four rules TAUT, cOMB, ABS and LET. In each case the aim
is to find the most general type that will satisty the rule for that form, and in the
process to find the substitutions which, when applied to the assumptions, will make
the necessary instantiations of variables in type-schemes.

Algorithm W.
W(T,e)=(S,7) where

(i) If e is x and there is an assumption x:Va,,...,2,7’ in T then
S=0  ad  c=[f/a]7
where the 3;s are new.
(i1) If e is e e, then let
W(Te)=(Sp,7y), W(ST,e)=(5,7) and U(Sr,1,— )=V
where 3 is new; then S =V §,§, and t =V 3.

(iii) If e is Ax.e, then let B be a new type variable and W(I', U{x: B},¢,) = (S, 7,);
thenS=S§,and v =§,8— ;.

(iv) If e is let x = ¢, ine, then let
W(Te)= (7)) and WS, UL ST(m)her) = (S )
then § =§,S, and 7 =7,.

When any of the conditions above is not met W fails. O

Here U(t,, 7,) is the MGU of the types 7, and 7, as computed by Robinson’s algo-
rithm.

The simplest case is an expression which consists of a single variable x. This de-
duction corresponds to an instance of the rule TAUT followed by one of INsT. If the
assumptions include a type-scheme for x, then the result is simply the generic instan-
tiation of the type-scheme to new variables. Otherwise the algorithm fails.

The case for abstraction Ax.e is probably the next simplest. The algorithm simply
picks a new variable 3 to represent the type of the argument x and recursively de-
duces the type of ¢, subject to the assumption that x has the type . The resulting
substitution is then applied to . This corresponds to an instance of the rule Ass.

The case for application e, e, is the most complex. First the most general type 7, for
the operator e, is computed. The resulting substitution is applied to the assumptions
and the most general type 7, for e, is computed under these new assumptions. The
next step is to find the most general type for the result of the application. This is done
by unifying the type 7, of the operator e; — after having applied the substitution that
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produced the most general type for the operand 7, — with the type 7, — 3, where
[ is a new type variable. Note that the substitution S, is not applied to 7, before the
unification. This is because unification will deduce it, the necessary instantiations
having been made in the type 7, of the operator, and the unification algorithm may
be able to find a more general type for the operator than it would had the substitu-
tion been applied to the operand. Similarly, the substitution that produces the most
general type 7, for the operator ¢, is not applied to 7, before unification. Substitu-
tion will always either produce a type that is as general, or less general, and if the
less general types can be unified then so can the more general. It follows that only
the necessary substitutions should be applied before unifying. The only necessary
condition in the corresponding inference rule coms is that the most general type 7,
of the operand must match the type of the argument to the operator. It then follows
that if all of the instantiations of type variables that were made to produce the most
general type 7, are made to 7, then the resulting unification is guaranteed to respect
the premisses of the inference rule and the inference will be sound. The resulting
type 7 of e is then just the result of applying just the unifying substitutions to .
The substitutions which make the necessary instantiations to realise the type 7 are
then the composition, in order, of those that were found during the derivation.

The final case of expressions of the form letx = ¢, ine, is a little easier. The cor-
responding inference rule LET is almost the same as ABs except it has an additional
premiss which asserts that the expression e, has the type-scheme o under the assump-
tions. Then the type of the body e, is the most general under the added assumption
that the bound variable x has this same type-scheme. The algorithm first finds the
most general type 7, for the expression ¢; and makes the necessary instantiations in
the assumptions. Then it closes the type 7, with respect to these new assumptions.
This process consists in universally quantifying any free type variables in 7, which
are not free in the assumptions and it corresponds to zero or more instances of the
rule GeN. This results in a type-scheme ¢ which is added to the assumptions as the
type of the bound variable x. The type of the expression e as a whole is then the
most general type for the expression e, under these assumptions. As in all the other
cases except that of variables, the resulting substitution is the composition, in order,
of all the substitutions that were derived in the process of determining the type 7.

A final step after computing (S, 7) = W(T',e) is to close the resulting type computed
for e under the assumptions ST that result from the instantiations S. The result

0,= :ST(7) is then called the principal type scheme for e under I and this means that
any other type-scheme o such that I'F- e 0 is a generic instance of o .

8 ML Implementation of type inference
The implementation divides naturally into three parts

¢ Type-schemes
* Assumptions

¢ The inference algorithm.

13



datatype typescheme = Forall of string * typescheme
| Type of term

fun mem p 1 =
let fun iter [] = false
| iter (x::xs) = (x=p) orelse iter xs
in iter 1 end

fun fbtyvars f b (Tyvar v) = if (mem v b) then (f,b) else (v::f,b)
| fbtyvars f b (Tyapp(name,args)) =
let fun iter r [] =71
| iter r (t::ts) =
let val (f,b) = fbtyvars rb t

in
iter f ts
end
in
let val fvs = iter f args in (fvs,b) end
end

fun fbtsvs f b (Forall(v,s)) = fbtsvs f (v::b) s
| fbtsvs f b (Type t) = fbtyvars f b t

fun tyvars t =
let val (f,b) = fbtyvars [] [] t in
feb
end

fun varno "" = ~1
| varno v =
let val vl = explode v
val letter = (ord (hd vl)) - (ord #"a")
fun primes r [] = r | primes r (h::t) =
if h = #"\039" then primes (r+26) t else ~1
in
if letter >= 0 andalso letter <= 25
then primes letter (tl vl) else ~1
end

fun newvar v =

let val nv = v+l
fun prime v 0@ = v | prime v n = prime (v*"'") (n-1)
val primes = nv div 26
val var = str(chr ((ord #"a") + (nv mod 26)))

in
(nv,prime var primes)

end

fun lastusedtsvar nv sigma =
let val vars = let val (f,b) = fbtsvs [] [] sigma in f@b end
fun iter r [] =r
| iter r (h::t) =
let val vn = varno h in
if vn > r then iter vn t else iter r t

end

in
(iter nv vars)

end

fun lastfreetsvar nv sigma =
let val (vars, ) = fbtsvs [] [] sigma
fun iter r [ =r
| iter r (h::t) =
let val vn = varno h in
if vn > r then iter vn t else iter r t

end

in

(iter nv vars)
end

Figure 2: Type schemes.
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fun tssubs nv sigma = (nv, sigma)

| tssubs nv ((tvp (t,v))::tvs) sigma =
val (fvs, ) = fbtyvars t
fun iter nv rnss (tvp (t,v)) (ts (Forall(sv,sts))) =

if (sv = v) then (nv, ts) else
if mem sv fvs then
val (nv,newv) = newvar nv
val (nv,sigma’) =
iter nv (compose [(Tyvar newv,sv)] rnss) tvp sts

(nv, Forall(newv,sigma’))
else val (nv,sigma’) = iter nv rnss tvp sts
(nv,Forall(sv,sigma’))

| iter nv rnss tvp (Type term) =
(nv, (Type (subs [tvp] (subs rnss term))))
val (nv, sigma’) = iter nv tvp sigma

tssubs nv tvs sigma’

Figure 3: Substituting Types.

Figure 2 is code for type-schemes o. The datatype extends types represented by terms
to type-schemes that may include generic variables. The function ppts in Appendix
E prints type schemes in a format that is easy to read. The function mem p 1 tests
whether an element p occurs in a list 1. The function fbtsvars returns lists of the
free and bound type variables in a type-scheme. The function tyvars returns a list
of the variables in a a type. The function newvar returns a new variable guaranteed
not to occur in any other type-schemes. This works by defining an enumeration on
variables of the form x””. If the letter  is the Oth letter of the alphabet and 4, is
the nth, then a variable of the form aEl”‘) where (m) is a string of m primes, has the
index 26m + n. Any variable of another form has the index —1. Thus if we know
the highest index n of any variable in a structure then we can generate a new one by
newvar n which simply adds one to the index of the last new variable allocated.

Finally tssubs in figure 3 substitutes types for the free occurrences of variables in a
type-scheme, renaming the generic variables to prevent free variables being captured
by bindings. It takes an integer argument nv which is the number of the next new
variable and it returns a pair consisting of the number of the next free variable and
the new type scheme.

Assumptions are lists of variables and type-schemes. In the code in figure 4 we define
assq to implement association lists of key/value pairs. The key is the variable name
and the value is a type-scheme. We then extend the operations of substitution to
whole sets of assumptions I (assumsubs) and define a function (fassumvars) to compute
the list of free variables in a set of assumptions, and for finding the greatest index of
the free variables in a set of assumptions (Lastfreeassumvar), for use in allocating new
variables. Finally we define tsclosure to create the closure I'(7) of a type T with
respect to a set of assumptions I' by making generic all the free variables in 7 that are
not freein T
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exception Assum of string

fun assq p L =
let fun iter [] = raise Assum p
| iter ((k,v)::xs) = if (k=p) then v else iter xs
in iter 1 end

fun fassumvars Gamma
let fun iter f [] f
| iter f ((_,ts)::Gamma’) =
let val (fvs, ) = fbtsvs f [] ts in
iter (f@fvs) Gamma’
end

in
iter [] Gamma
end

fun assumvars Gamma =
let fun iter f [] = f
| iter f ((_,ts)::Gamma’) =
let val (fvs,bvs) = fbtsvs f [] ts
in
iter (f@fvs@bvs) Gamma’

end

in

iter [] Gamma
end

fun lastfreeassumvar Gamma =
let fun iter r [] =7r
| iter r ((_,sigma)::Gamma’) =
iter (lastfreetsvar r sigma) Gamma’
in
iter ~1 Gamma
end

fun assumsubs nv S Gamma =
let fun iter rnv S [] = (nv, rev r)
| iter r nv S ((v,sigma)::Gamma’) =
let val (nv, sigma’) = tssubs nv S sigma

in
iter ((v,sigma’)::r) nv S Gamma’
end
in
iter [] nv S Gamma
end

fun tsclosure Gamma tau =
let val favs = fassumvars Gamma
val (ftvs, ) = fbtyvars [] [] tau
fun iter bvs [] = Type tau
| iter bvs (v::vs) =
if (mem v favs) orelse (mem v bvs)

then iter bvs vs
else Forall(v,iter (v::bvs) vs)

in

iter [] ftvs
end

Figure 4: Assumptions.
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datatype exp = Var of string
| Comb of exp * exp
| Abs of string * exp
| Let of (string * exp) * exp

infixr -->
fun taul --> tau2 = Tyapp("%f",[taul,tau2])

fun W nv Gamma e =

case e of
(Var v) =>
let fun tsinst nv (Type tau) = (nv, tau)
| tsinst nv (Forall(alpha,sigma)) =
let val (nv, beta) = newvar (lastusedtsvar nv sigma)
val (nv, sigma’) =
(tssubs nv [(Tyvar beta,alpha)] sigma)
in
tsinst nv sigma’
end
val (nv, tau) = tsinst nv (assq v Gamma)
in
(nv, ([, tau))
end

| (Comb(el,e2)) =>
let val (nv, (S1,taul)) = W nv Gamma el
val (nv, SlGamma) = assumsubs nv S1 Gamma
val (nv, (S2,tau2)) = W nv SlGamma e2
val S2taul = subs S2 taul
val (nv,beta) = newvar nv
val V = unify S2taul (tau2 --> Tyvar beta)
val Vbeta = subs V (Tyvar beta)
val VS2S1 = compose V (compose S2 S1)
in
(nv, (VS2S1, Vbeta))
end
| (Abs(v,e)) =>
let val (nv,beta) = newvar nv
val (nv,(S1,taul)) =W nv ((v,Type (Tyvar beta))::Gamma) e
val Slbeta = subs S1 (Tyvar beta)
in
(nv, (S1,(Slbeta --> taul)))
end
| (Let((v,el),e2)) =>
let val (nv, (S1,taul)) = W nv Gamma el
val (nv, SlGamma) = assumsubs nv S1 Gamma
val (nv, (S2,tau2)) =
W nv ((v,tsclosure SlGamma taul)::S1lGamma) e2
val S2S1 = compose S2 S1
in
(nv, (S2S1,tau2))
end

fun principalts Gamma e =
let val (var, (S, tau)) = W (lastfreeassumvar Gamma) Gamma e
val (_,SGamma) = assumsubs var S Gamma
in
tsclosure SGamma tau
end

Figure 5: The algorithm W.
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The code in figure 5 declares a datatype exp for expressions in the language and im-
plements W. The function w takes an extra parameter which is the index of the next
free variable in the set of assumptions and the type-scheme. It then returns the new
value of this as the first element of a pair, the second of which is the pair consisting
of a substitution and the type of the expression. w may fail with either an exception
Unify generated in the unification or with the exception Assum which happens when
there are no assumptions for a free variable in an expression. Finally the function
principalts is defined which takes assumptions I" and an expression e, finds the high-
est indexed free variable ocurring in the assumptions and calls w to find a substitution
S and a type 7 for e. It then applies S to the assumptions and closes the type T with
respect to the new assumptions before returning the resulting principal type-scheme
fore.

The function w uses the right-associative function space type constructor - -> to repre-
sent function types using the special type constant sf. Otherwise it assumes nothing
of the types beyond those in the Gamma list.

The functions in figure 6 construct terms and types. The left-associative @: is function
application. The function num constructs the Church numerals.

In total, excluding the code for constructing and printing the terms and types, the
implementation is less than 250 lines of standard ML. The code should run when
copied and pasted from the PDF file of this document, but it can also be downloaded
in a single contiguous text file from http://ian-grant.net/hm
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fun mk_func name args = Tyapp(name,args)

fun mk_nullary name = mk_ func name []

fun mk_unary name arg = mk_func name [arg]

fun mk_binary name argl arg2 = mk_func name [argl, arg2]

fun mk_ternary name argl arg2 arg3 = mk func name [argl, arg2, arg3]

fun pairt tl1 t2 = mk binary "pair" t1 t2
fun listt t = mk unary "list" t
val boolt = mk nullary "bool"

(* Type variables *)

val alpha = Tyvar "a
val beta = Tyvar "b"
val alpha’ = Tyvar "a'"
val beta’ = Tyvar "b'"
(* Type-schemes *)

fun mk_tyscheme [] t = Type t
| mk tyscheme ((Tyvar v)::vs) t = Forall (v, mk tyscheme vs t)

(* Lambda expressions with let bindings *)

fun labs (Var v) e = Abs(v,e)
fun 1let (Var v) el e2 = Let((v,el),e2)

infix @:
fun el @: e2 = Comb(el,e2)

fun lambda [] e = e
| lambda (x::xs) e = labs x (lambda xs e)

fun letbind [] e = e
| letbind ((v,el)::bs) e = llet v el (letbind bs e)

fun lapply r [ =r
| lapply r (e::es) = lapply (r @: e) es

(* Variables *)

val x = Var "x"
val y = Var "y"
val z = Var "z"
val p = Var "p"
val f = Var "f"
val m = Var "m"
val n = Var "n"
val s = Var "s"
val i = Var "i"

(* Church numerals *)

fun num n =

let val f = Var "f"

val x = Var "x"

fun iter r 0 = lambda [f,x] r

| iter r n = iter (f @: r) (n-1)
in
iter x n

end

Figure 6: Constructing Types and Terms.
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Now we can use these to construct and type the expression SO whose type was de-
rived in Appendix C.

val ZERO = num 0
val S = lambda [n,f,x] (n @ f @ (f @ x));
ppts (principalts (S @: ZERO));

This is the polymorphic let expression used as an example in [2]:

val polylet = letbind [(i,lambda [x] x)] (i @: 1i);
ppts (principalts polylet);

And we can type the map definition given in the same paper.

val condts = mk tyscheme [alpha] (boolt --> alpha --> alpha --> alpha)
val fixts = mk_tyscheme [alpha] ((alpha --> alpha) --> alpha)

val nullts = mk tyscheme [alpha] (listt alpha --> boolt)

val nilts = mk tyscheme [alpha] (listt alpha)

val consts = mk tyscheme [alpha] (alpha --> listt alpha --> listt alpha)
val hdts mk_tyscheme [alphal (listt alpha --> alpha)

val tlts mk_tyscheme [alphal (listt alpha --> listt alpha)

val pairts = mk tyscheme [alpha, beta] (alpha --> beta --> pairt alpha beta)
val fstts mk_tyscheme [alpha, beta] (pairt alpha beta --> alpha)
val sndts mk_tyscheme [alpha, betal (pairt alpha beta --> beta)

val bool assums = [("true",Type(boolt)), ("false",Type(boolt)), ("cond",condts)
val pair assums = [("pair",pairts),("fst",fstts),("snd",sndts)

val fix assums = [("fix",fixts)
val list assums = [("null",nullts),("nil",nilts),

("cons",consts), ("hd",hdts), ("tl",tlts)

(* let map

(fix (A map f s.
(cond (null s) nil
(cons (f (hd s)) (map f (tl s)))))) in map *)

val assums = bool assums@fix assums@list assums

val map’ = Var "map"
val fix = Var "fix"
val null’ = Var "null"
val nil’ = Var "nil"
val cond = Var "cond"
val cons = Var "cons"
val hd’ = Var "hd"

val tl’ = Var "tl"

val mapdef =

letbind [(map’,
(fix @: (lambda [map’, f, s
(cond @: (null’ @: s)
@:
@: (cons @: (f @: (hd" @: s))
@: (map’ @ f @: (tl” @: s)))))))
map”;
ppassums assums;
ppexp mapdef;

val mapdefts = principalts assums mapdef;
ppts mapdefts;

Here is the predecessor function PRED.

val PAIR = (lambda [x, y, fl (f @ x @: vy))
val FST = (lambda [p] (p @: (lambda [x, y] X)))
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val SND = (lambda [p] (p @: (lambda [x, y]| y)))

val G = lambda [f,p] (PAIR @: (f @: (FST @: p)) @: (FST @: p))
val PRED = lambda [n] (SND @: (n @: (G @: S) @: (PAIR @: ZERO @: ZERO)))
val SUB = lambda [m, n] (n @: PRED @: m);

ppts (principalts PRED) ;
ppts (principalts (PRED @: (num 6)));
ppts (principalts SUB) ;

Finally, Mairson [4] constructed a pathological expression where the principal type
grows exponentially with the number of repeated iterations of pairing. In standard
ML this expression is

let fun pair x y z=2z xy
fun x1 y = pairy vy
fun x2 y = x1 (x1 vy)
fun x3 y = x2 (x2 vy)
fun x4 y = x3 (x3 y)
fun x5y = x4 (x4 y)

in

x5 (fn z => 2z)
end;

This takes several seconds for Moscow ML to type and the resulting scheme is 40-
50,000 lines of output. The term below is more feasible.

val x1 = Var "x1"
val x2 = Var "x2"
val x3 = Var "x3"
val x4 = Var "x4"
val x5 = Var "x5"
val pair = Var "pair"

val mairson =

letbind
(pair,lambda [x,y,z] (z @: x @: y)),
(x1,lambda [y] (pair @: y @: Yy)),
(x2,lambda [y] (x1 @: (x1 @: vy))),
(x3,lambda [y] (x2 @: (x2 @: vy))),
(x4,lambda [y] (x3 @: (x3 @: y)))

(x4 @: (lambda [x] x));

ppts (principalts mairson);

The code here can type the expression with five iterations. On my machine it takes
over 50 seconds! The printing routine ppts is not tail-recursive, so it chokes on some-
thing of this size.

val mairson =

letbind
(pair,lambda [x,y,z] (z @ x @: y)),
(x1,lambda [y] (pair @: y @: y)),
(x2,lambda [y] (x1 @: (x1 @: y))),
(x3,lambda [y] (x2 @: (x2 @: y))),
(x4,lambda [y] (x3 @: (x3 @: y))),
(x5,lambda [y] (x4 @: (x4 @: y)))

(x5 @: (lambda [x] x));

principalts mairson;
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Appendices

A Standard ML

This is not intended as a tutorial on writing standard ML. It is just enough to let
someone who has some experience with programming languages to read the code I
present here. It would be very frustrating indeed to attempt to learn to write ML
from this. There are far better texts available for that. Of particular note are Mads
Tofte’s very concise Tips for Computer Scientists on Standard ML, available from
http://www.itu.dk/people/tofte which, in just 20 pages, covers 90% of the language,
and Larry Paulson’s book ML for the Working Programmer [6].

Variable values can be declared using expressions like

val p = (1,4)

which makes p a pair of integers. The expression

fun f x = x + 1

is syntactic sugar for

val f = fn x => op + (x, 1)
The prefix op makes an infix operator an ordinary function. Binary operators are
always functions on pairs.

Recursive abstractions can be defined using rec like this

val rec len = fn n => fn 1 => if 1 = [] then n else len (n+l) (tl 1);

An environment containing variable bindings can be established using the 1et expres-
sion

let val x = 4
fun square x = x * x
val x = 3
val y (square x) -1

in
X + (square y)
end

later bindings may refer to or shadow earlier ones. Functions may call themselves,
but may not call others in the same let construct however, unless they are declared
with and instead of fun. For example

let fun odd 0 = false

| odd n even (n-1)
and even 0 = true
| even n = odd (n-1)
in
odd 15
end
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Lists can be constructed using expressions like 1::2::3::nil which is the same as
[1,2,3]. Lists can be deconstructed using hd and t1 but these are not used very of-
ten because ML has pattern matching:

fun len [] = 0
| len (_::xs) =1 + len xs

Here the argument of the function will be matched against one of the two mutually
exclusive and exhaustive possibilities for the type of lists. The first match is with the
empty list nil and causes the function to return 0. If that pattern does not match then
the next and last one is tried, which binds the variable xs to the tail of the list. The
underscore _ is the wild-card pattern which matches anything because in this case we
are not interested in the actual elements of the list, only their number.

The appearance of => in the lambda notation fn x => x is a hint that in fact a pattern
can be used in lambda definitions. Thus one may write

val f = fn 6 == 5
| n=>n+1

This is seldom done except with simple patterns like

fn (x, ) => x

Patterns can be used in val declarations as well as to define any value via case expres-
sions as in this contrived example

fun front 1 =
let val (x,y) =
case 1 of [] => (0,1)

[ ((x,y):i:_) => (x+1,y+1)
in
X +Yy
end
which is just
fun front [] =1 | front ((x,y):: ) = x+y+2

Assignment to a pattern with literals like 8 or []1 can be used to check a value be-
cause a Bind exception is thrown if the pattern doesn’t match. It can also be used to
deconstruct returned values ‘automatically’. For example

val (x,y) = (fn. m => (m-5,m)) 5

is the same as

val x
val y

o
()

Quite often one needs to deconstruct a value with a pattern and also use the whole
thing. This can be done with sub-patterns using the keyword as and it is better than
reconstructing the value from its parts. For example

23



val f = fn (1 as ((p as (t1,t2))::t)) => if tl=1 then 1 else p::(1,2)::t

The constants true and false are the type constructors for the type bool. The state-
ments andalso and orelse are lazy in that the second argument is only evaluated if the
first evaluates to true and fatse respectively.

Strings are enclosed in double quotes and string concatenation is via the binary op-
erator ~. Characters are a different type, constructed using e.g. #'c" or the function
chr which takes an integer and returns the corresponding character. A character can
be converted to a string using str and to an integer using ord. The built-in function
explode takes a string a returns a list of characters.

Vectors of any types can be constructed and deconstructed using e.g.

val v = (1,"2",#"3");

#2 v

The empty vector () is typically called #nit. It has a type which is called unit.
Whereas the type bit, which for historical reasons is called boot, has two possible
values, the unit type has only one.

The main use for the unit type is to delay evaluation. The ML evaluation is eager in
that it evaluates all arguments before evaluating the application of a function. How-
ever, it won’t ‘evaluate under a lambda’ which is to say that a function body will not
be evaluated until it is applied to an argument value.

ML has datarypes. These are new types which are constructed from existing types by
defining constructors which are functions which construct elements of the new type
given the values of the constituent parts.

Polymorphic lists can only be of one uniform type a. That is we can have a list of
integers or list of strings or a list of characters but we cannot have a list like [1, "2,
#'3"]. However we can define a new sum type

datatype isc = Int of int
| Str of string
| Chr of char

Constructors like Int, str etc. must start with an upper-case letter.

ML then allows

[Int 1, Str "2", Chr #"3"]

and we can write functions that operate on such lists using pattern matching.

fun homogenise r [] = rev r
| homogenise r (x::xs) =
let val n =
case x of Int n =>n
| Str s == if s = "" then 0 else ord (hd (explode s))
| Chr ¢ => ord ¢
in
homogenise (n::r) xs
end

homogenise [] [Int 1, Str "2", Chr #"3"]
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Sum types are typically deconstructed using case analysis like this.

The constructors for datatypes must always declared all at once in a single statement
otherwise the types could change as evaluation proceeds. ML exceptions are an ex-
ception to this. There is a datatype exn and declaring an exception using a statement

like
exception Error of string

declares an additional constructor for the type exn.

The statement raise Error "message" can then appear anywhere a value may appear
and if evaluated evaluation will continue with the most recent matching handler de-
clared using the handle statement. For example

fun r () = raise Error "message";

(r ()) handle Error m => "Exception: Error "”m™" caught."

Here the expression after => is a pattern which matches some but not necessarily all
constructors of the exn datatype. If there is no matching handler then the execution
of the program will terminate with a message like ‘Uncaught exception.’

This is also an example of the use of the unit type to delay evaluation.

A recursive datatype has proper parts which are of the type being defined. For exam-
ple a datatype representing simple arithmetic expressions might look like this

datatype expr = Sum of expr * expr

| Prod of expr * expr
| Neg of expr
| val of int

Given this type declaration one may construct values using the resulting type con-
structor functions:

val e = Prod(Sum(Val 1,val 3),Neg(Val 4))

This is abstract syntax because the resulting structure is unambiguous. If this expres-
sion had been written out it would have required parentheses or precedence rules to
disambiguate the order of application. For example (1+3) x —4.

One may then write a function to evaluate such expressions using pattern matching

fun eval (val n) n

| eval (Neg n) ~(eval n)
| eval (Prod(el,e2)) = (eval el) * (eval e2)
| eval (Sum(el,e2)) = (eval el) + (eval e2)

eval e;

Note that unary minus in ML is the operator ~ not the ordinary minus sign.

ML lets you declare new operators and assign precedence and associativity. The fol-
lowing creates a pair of operators ~<: and :>* on pairs of pairs. The puzzle is to work
out what the final expression evaluates to without running it.
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fun op >~ ((a,b), (c,d))
fun op *<: ((a,b), (c,d))

infixr 1 :>"
infix 2 "<:;

(1,2) ~<: (3,4) > (5,6) "<: (7,8) :>" (9,0)
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D Printing Types

fun pptsterm tau =
let fun iter prec (Tyvar name) = ""“name
| iter prec (Tyapp(name,[])) = name
| iter prec (Tyapp("%f",lal,a2])) =
if prec <= 10 then s else "(""s"")"

let fun maybebracket s =
in
maybebracket ((iter 11 al)”~" -> "~(iter 10 a2))

end
| iter prec (Tyapp(name,args)) =

let fun arglist r [] =r

| arglist r (h::t) =

arglist (r~(iter 30 h)~(if t=[] then "" else ", ")) t

in
if (length args) > 1 then (arglist "(" args)”") "“name
else (arglist "" args)™" "~name

end
in
iter 10 tau
end

fun ppterm (Tyvar name) = name
| ppterm (Tyapp(name,[])) = name

| ppterm (Tyapp(name,args)) =
let fun arglist r [] =7r
| arglist r (h::t) =
arglist (r~(ppterm h)~(if t=[| then "" else ",")) t

in
name”™(arglist "(" args)™")"
end

fun ppsubs s =
let fun iter r [] = r™"]"

| iter r ((term,var)::t) =
iter (r~(ppterm term)~"/"~var~(if t=[] then "" else ",")) t

in iter "[" s end
fun ppexp e =
let fun ppe r e =
case e of

(Var v) => r*v
| (Comb(el,e2)) => r~"("~(ppe "" el)"" "~(ppe "" e2)"")"

| (Abs(v,e)) => r™"(\\""v*"."~(ppe "" e)"")"
| (Let((v,el),e2)) => r™"let "~v""=""(ppe "" el)™" in "~(ppe "" e2)

in
ppe "' e
end
fun ppts sigma =
= iter (r™"!"~sy™".") sts

let fun iter r (Forall(sv,sts))
| iter r (Type term) = r~(pptsterm term)
in
iter "" sigma
end

fun ppassums Gamma

let fun iter r

T
| iter r ((v,ts)::assums) =
(

iter (r~vA":"~(ppts ts)”~(if assums=[] then "" else ",")) assums
in
iter "" Gamma
end
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